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Representations of the superalgebra F4 and Young 
supertableaux t 

A SciamnoS and P SorbaO 
$ Dipartimento di Fisica, Napoli, Italy and INFN, Sezione di Napoli, Italy 
8 LAPP, Annecy-le-Vieux, France 

Received 4 November 1985 

Abstract. We present a method for constructing typical as well as atypical finite-dimensional 
representations of the superalgebra F,. For such a purpose, Young supertableaux are 
introduced. 

1. Introduction 

Among simple Lie superalgebras [ 11, the superalgebra F4 occupies a peculiar position. 
It is one of the three exceptional superalgebras, and also the only one simple superal- 
gebra with a fermionic part completely spinorial under its bosonic one. Indeed its 
odd sector transforms as a (2,8) under the even one A, x B3.  As a real form this 
bosonic part is a non-compact form of SU(2) x 0(7) ,  or more precisely SU(2) x Spin(7). 
It might be interesting to remark that the sixteen-dimensional representation of SO( lo), 
considered as a grand unification group, reduces under SU(2) x SO(7) as 16 = (2,8) 
and therefore that the fermionic part of F4 can be directly associated with the 16-plot 
of quarks and leptons of one family with the correct quantum numbers of colour and 
electric charge. The relevance of F4 might also show up in supergravity theories since 
its orthogonal part can be seen as the de Sitter group in d = 6 dimensions, while the 
Clifford algebra in d = 6 is precisely eight dimensional [2,3]. 

In this paper we want to consider the finite-dimensional representations of F4. 
From the general classification of finite-dimensional representations for simple superal- 
gebras [4], explicit studies have been done in the case of unitary superalgebras [5] 
and orthosymplectic ones [6] for which Young supertableaux have also been introduced 
[7-91. In a way analogous to that used in reference [8] for OSp(M/N)  superalgebras, 
we build up a procedure to decompose a F, representation into representations of its 
bosonic part. We must mention the work of Thierry-Mieg who has been able, using 
the Weyl symmetry [9], to construct numerically representations of simple superalge- 
bras [ 101. Moreover a first attempt to introduce Young tableaux for F4 has been done 
in reference [ 111, but this last study is far from being general. 

2. The superalgebra F4 

Finite-dimensional irreducible representations of superalgebras can be characterised 
by their highest weight in the root space, or equivalently by means of Kac-Dynkin 
labels [4]. 

t Work supported in part by DRET under contract no 85/1329/DRET/DS/SR. 

0305-4470/86/122241+ 08$02.50 @ 1986 The Institute of Physics 2241 



2242 A Sciarrino and P Sorba 

The Kac-Dynkin diagram for the rank-4 superalgebra F4 is 

a1 a2 a3 a4 

0 r, I r ,  0 

where a 2 ,  a 3 ,  a4 are positive or null integers. For the SO(7) part, a2 is the shorter 
root and the relation between Dynkin labels ( a 2 ,  a 3 ,  a4) and Young tableau labels 
( A 1 9  A 2 9  A3)  is 

In (2.1) the Sp(2)=SU(2) representation label is hidden by the odd root 2 and its 
value (=2j)  is given by 

b = :(2a1 - 3 a2 - 4 ~ 3  - 2a4). (2.3) 

We note that (2.3) implies a, to be integer or half-integer. 

SU(2) x S0(7 ) ,  the system of roots is 
As the adjoint representation of F4 decomposes as (1,2) + ( 3 , l )  + (2,8) under 

even part Ao={*6;  * . s i }  i, j = 1,2,3,4 
(2.4) 

odd part A1 = { f ( * ~ 1 *  ~ 2 *  ~3 6) ) .  

Denoting {hi} ( i  = 1, . . . , 4 )  a basis of the Cartan subalgebra, we deduce from (2.4) 
the four simple positive (negative) roots P:, Pf ( P ; ,  PJ,  j = 2,3,4: 

(2.5) p+-L  1 - 2 ( ~ 1 + ~ 2 + ~ 3 + 6 )  (Y:=--E~ a : = ~ 1 - ~ 2  ~ : = E Z - E ~  

{p: ,  p ; }  = h ,  [a:, a;] = h2 [a:, a;] =2h3 [a:, a;] = 2h4. (2.6) 

which satisfy 

The Cartan matrix, defined as 

[hi, a;] = *a..a' v I i, j = 1,2, 3 , 4  

(in which we identify a1 PI) then becomes 

0 1 0 0  

0 -1 

(2.7) 

Note that for convenience we use the same notation for the root and its corresponding 
operator. 

The different Sp(2) X SO(7) representations contained in the representation 
( a l ,  a,, a 3 ,  a4) of F4 are obtained by repeated application of the odd negative roots 
p i  (k = 1, . . . , 8 )  on the highest weight A (which satisfies hiA  = ai, i = 1,2,3,4).  These 
eight negative roots form an eight spinorial representation of SO(7) as well as the eight 
positive odd ones, and can also be obtained from P ;  as follows [6]: 

P i  = [ P ; ,  G I  
Pa = [Pi,  a;] = [ P i ,  a i l  

P;  = [ P F ,  a;] P;  = [P ; ,  4 1  P i  = [P; ,  ail  
(2.9) 

P;  = [ P i ,  a;] P i  = [P; ,  .;I 
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that is 

One can easily deduce, using (2.6) and (2.9), that the anticommutation relations 
{p: ,  p ; } ,  i = 1, . . . , 8 ,  give, up to a possible multiplicative factor, h, ,  h, - h2, h, - h2 - 
2h3, h, - h2 - 2h3 - 2h4, h, - 2h2 - 2h3, hl - 2h2 - 2h3 - 2h4, h, - 2h2 - 4h3 - 2h4, h,  - 

In the following a Sp(2) x O(7) representation will be said to belong to the ith 
level, 1 i G 8, if it is obtained by the ith-fold antisymmetric product of i negative 
fermionic roots on A. 

The action of p i  ( k  = 1, . . . , 8 )  on A = ( a , ,  a2, a3, a,) can be easily deduced using 
(2.9). In order to use more conveniently the following relations in the next section we 
develop A as follows: 

3 h2 - 4h3 - 2h,. 

A = ( a i , a 2 , a 3 , a 4 ;  b ; A i , h ~ , A 3 ) .  (2.11) 

Then 

P ; A = ( a l , a 2 + 1 , ~ 3 ,  U,; b- l ;A,+$,A2+f lA3+f)  
p;A = ( U ,  - 1, a2 - 1, a3 + 1, U,; b - 1; A1  ++, A 2 + f ,  A3  - f )  

p;A = ( U ,  - 1, a2+ 1, a3 - 1, U,+ 1; b - 1; A I  +f, A 2  -1, A 3  +f) 
P ; A = ( a , - l ,  ~ 2 + 1 , ~ ~ , ~ 4 - 1 ;  b-1 ;  A1-;,Az+f,A,+f) 

f i ; A = ( a l - 2 , ~ 2 - 1 , ~ 3 ,  a 4 t l ;  b-1; Al+f,A*-f,A3-$) 
p;A= ( U ,  -2, a2 - 1,03 + 1, ~ 4 -  1; b - 1; A1 -$, A 2 + $ ,  A3 -f) 
P;A=(a,-2,  a2+1, ~ 3 - 1 ,  U,; b-1;  A , - f , A 2 - f ,  A3+$) 
p S A =  ( U ,  -3, ~ 2 -  1, ~ 3 ,  U,; b - 1; AI -4, A 2  -7, A 3  -;). 

(2.12) 

1 

Finally, we note that a F, representation with b < 4 has to satisfy a consistency 
condition, i.e. 

b = O  ai=o i = 2 , 3 , 4  
b = l  not possible 

b = 2  a2= U ,  = 0 

b = 3  a2 = 2a4+  1, 

3. The content of a F4 representation and Young supertableaux 

(2.13) 

To the F4 representation labelled by (b ;  a2, a3, a,) can be associated a Young super- 
tableau (YST) defined as follows: (i) its first row contains b boxes and (ii) the Young 
tableau (YT) obtained after erasing the first row is just the transpose of the YT 
corresponding to the representation ( a2 ,  a3, a,) of O(7): 



2244 A Sciarrino and P Sorba 

If u2 is odd, this O(7) Young tableau will be related to a spinorial O(7) representa- 
tion. Using the convention of reference [8] each box of its first column will contain 
the letter ‘s’: [SI representing ‘half a box’. It follows that in the case of O(7) spinor 
representations the corresponding YST of F4 contain in the second row three [SI boxes 
while the lower rows contain (if any) usual boxes 0. Such a framework has been 
developed by the authors for computing products of orthogonal group representations 
(see the appendix of reference [SI) and references therein). In case of F4, we will call 
spinorial a representation ( b ;  a * ,  a , ,  a4)  with b odd and a2 even, or b even and a ,  
odd, and vectorial the other F4 representations. We remark that the drawing of a 
graphically meaningful YST according to the rules for usual YT implies automatically 
the consistency relations (2.13). 

In the following we give rules in order to obtain from a F4 YST the content of the 
corresponding representation in terms of representations of the bosonic algebra 
SU(2) x O(7). We have to distinguish typical representations from atypical ones. 

3.1. Typical representations 

A necessary (but not sufficient!) condition for a representation to be typical is that b 5 4. 
For b 2 7, the decomposition formula for a typical representation (b, [A]) into 

SU(2) x O(7) representation reads, in terms of Young tableaux, 

where in the RHS of (3.2) the first row Young tableau is relative to SU(2) representations 
and the other ones to O(7) representations. The symbol x stands for the Kronecker 
product and the subscript A for ‘antisymmetric’. 

The justification of (3.2) is in the property of any F4 irreducible representation to 
appear as a sum of SU(2) x O(7) representations obtained from the highest weight A 
by the repeated application of the negative fermionic generators which belong to the 
spinorial eight-dimensional representation ( A l  = A 2  = A, =;) of O(7). One can see from 
(2.12) that by action of a negative fermionic generator, b decreases by one unit. 
Moreover, from the (anti-) commutation relations given in (2.6) and (2.7) one deduces 
that only antisymmetric combinations of negative fermionic generators allow us to 
reach the different SU(2) x O(7) representations. The O(7) representations showing 
up at the kth level will then be obtained from the Kronecker product of [ A ]  by the 
antisymmetric (A subscript) k-times product of the fundamental spinorial O(7) rep- 
resentation. We list here the O(7) representations which appear in the antisymmetric 
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k-fold product (8 x . . . x 8)A:  

[' 1 '3 - 8 k = l  292,  2 - 
k = 2  

k = 3  

k = 4  [ l ,  1,1~0[2,0,0]0[1,0,0]0[0,0,0]=350270701 

k > 4  

[ 1, 1 ,010 [ 1, 0, 01 = 2 1 0  7 

[i, ;, 3 0 [f, f ,  f ]  = 480 8 (3.3) 

same result as for (8 - k). 

For 7 > b 2 4, (3.2) has to be slightly modified since not all the O(7) representations 
constituting the k-fold antisymmetric product of [i, 1,1] by itself are present. We will 
then have to consider 

b = 4  k = l  [ A  1 X [z, z, 21 
1 1 1  

k = 2  [A]x{[l, l , 0 ] 0 [ 1 , 0 , 0 1 - [ 0 , ~ , ~ 1 ~  

k = 3  3 1 1  
[ A  1 x [ T ,  T ,  T I  

k = 4  [Alx{[l, 1, ~ ] ~ [ ~ , ~ , ~ ~ ~ ~ ~ , ~ , ~ ~ - ~ ~ ,  1,011 (3.4) 

b = 5  k = l , 2 , 3  as in (3.3) 

The reason for these modifications is due to the fact that for b < 8, the labels of the 
highest weight A have to be such that the k-fold, k > 6, product of ordered fermionic 
generators have to give a decoupled state. Taking as an example the case b = 4, one 
can check that subtracting the trivial representation [0, 0, 01 at level k = 2 implies the 
subtraction of [O,O,O]x[f,;,i], i.e. of the 8 representation at k = 3 ,  then of the 
8 x 81, = 2 1 0 7  representations at k = 4, and finally of the 4808  representations at 
k = 5. As the antisymmetric product of five times the representation 8 by itself gives, 
as for k = 3, the representations 4808, the k = ( b  + 1)th level is then automatically 
empty. 

The above method allows one, of course, to reconstruct the formula providing the 
dimension of a F4 typical representation 

dim( b ;  [A] )  = 2'( b - 3) dim[A]. (3.7) 

3.2. Atypical representations 

The property for a representation to be atypical can be expressed in different ways 
[l]. One can say that a finite-dimensional representation of a simple superalgebra 
with highest weight A is atypical if there exists a positive fermionic root U, with 2 a  
not being an even root and satisfying 

( A + p , a ) = O  with p = po- p1 (3.8) 
where po (respectively p l )  is the half-sum of all the even (respectively odd) positive 
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simple roots. In order to formulate this property in a more concrete way, let us consider 
a F, representation labelled by ( a , , .  . . , a,) and such that (A+p ,P: )  = 0, i.e. a, = 0. 
One can notice that, A being the highest weight, P:P;A = {P ; ,  P:}A = h,A = a,A and 
therefore P:P;A = 0. The condition a, = 0 will be called the first atypical condition. 
Note that for convenience, we have used the same notation for the root and its 
corresponding operator. 

There will be eight possible atypicality conditions for F,. We recall that only 
antisymmetrised products of negative fermionic roots will allow one to go down the 
different 'floors' of a superalgebra representation, the symmetric combinations belong- 
ing to the bosonic algebra part. Actually these eight conditions will correspond to the 
relations 

( A  + P, P 3  = 0 i =  1 , .  . . , 8  (3.9) 

or to 

X ~ X ; A = O  (3.10) 

with X ;  = P ; ;  P T P ; ;  P;P;P; ;  P;P;P;P;;  P;P;P;P; ;  PaP;P;P; ;  PYPZPYPiP; ;  
PsP;PaP;P;P;.  

We note that the operators X y ,  8 2 i 2 5 ,  are not the product of i negative fermionic 
roots as it appears for the other kinds of simple superalgebras: this is a feature of the 
F, superalgebra in which the fermionic roots belong to the spinorial fundamental 
representation of its bosonic part O(7) and not to the vector fundamental representation. 
We list here these eight atypicality conditions [ 11: 

(1) a,=O or b=O 

(2) a, = a2+ 1 or b = 4(2 - a2 -4a3 -2a,) 

(3) a, = a2+2a3+3 or b = f(6 - u2 - 2a,) 

(4) a, = a2+2a3+2a,+5 or b = f( 10- a2+2a4) (3.11) 

(4') a, =2a2+2a3+4 or b =f(8+u2-2a4) 

( 5 )  

(6) 

(7) a, = 3a2+ 4a3+ 2a,+9 or b = f(18 + 3a2+ 4a3+ 2~2,). 

In the construction of an atypical representation, we have to decouple an invariant 
subspace. This can be done as follows. Let A be an atypical representation of type 
(i). We start by making a decomposition using (3.2) for any value of the non-negative 
integer b. Let V be the set of Sp(2) x O(7) representations obtained by this method. 
If at the first level, a Sp(2) x O ( 7 )  highest weight A' satisfying the same ith atypical 
condition does appear, A' has to be considered as the highest weight of the atypical 
subspace. Let V, be the decomposition of the F4 representation associated with A'. 
Again using (3.2), the atypical representation identified by A will be obtained by taking 
away from V all the Sp(2) x O(7) representations appearing in V,. If there is no such 
A', we then have to look for a Sp(2) x O(7) highest weight A" satisfying the ( i  - 1)th 
atypical condition at the second level of the decomposition of A. Denoting by Vb the 
decomposition of A" into Sp(2) x 0(7).representations, we will then have to take away 

a ,  = 2a2+ 2a3 + 2a,+ 6 

a, = 2a2+4a3+ 2a,+ 8 

or 

or 

b = f( 12 + a, + 2a,) 

b = f( 16+ a2 + 4a3 + 2a4) 
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from V the Sp(2) x O(7) representations present in V;. If no such A'' exists, we must 
look for a highest weight A"' satisfying the ( i  - 2)th atypical condition in the third lev.el 
of A decomposition and proceed as before, and so on. 

The justification of the above statements lies in the following observations. 
(i) If ( A + p , p : ) = O  then ( A ' + p , p T ) = O  with A'=A-p:.  
(ii) If A' does not appear in V, i.e. A' is characterised by Dynkin labels which do 

not specify a highest weight of a Sp(2) x O(7) irreducible representation, then (A"+ 
P , P : - ~ ) = O  with A"=A'-pT-_,. 

(iii) If (A+p ,pT)=O and 1A-p: )~  V then P:lA-PT)=O; it follows that [A-p:) 
behaves as the highest weight of the invariant subspace to decouple. 

Before presenting an example of decomposition, let us mention that a formula for 
the dimension of representations satisfying the 3rd atypicality condition can be obtained 
as a byproduct of our method. Using (2.11), (2.3) and the property of b to be integer 
such representations are of the form ( a ,  = 2a + 3, a2 = 0, a3 = a, a4 = 0). With respect 
to the parameter a3 = a, their dimensions are 
dim(2a+3,0,  a , O ) = & a + l ) ( a + 2 ) ( a + 3 ) ( 2 a + 3 ) ( 2 a + 5 )  

8( a + 2)( a + 3)( a + 4) + 8a( a + 1)( a + 2) 
( 2 a f 3 )  (2a + 5 )  

( a  +3)2(a +4)(2a +7) a ( a  + 1)2(2a + 1) + + 
( a  + 1)(2a +3) ( a  +3)(2a + 5 )  

4. Example 

(3.12) 

Let us illustrate our method by decomposing the following F4 representation: 
(ai  = 8, (12=  U 3 =  1, a4=0)  (b  = 3; [$, $, i]) 

which verifies the 4th and 4th atypical condition. The decomposition of this 
representation, as if it were typical, is 

4 112 

3 3 1  (0) (3; [I, IYII) 

(1) 
3 3 1  1 1 1  (2; [i, %I1 x b , Z ,  Ill 
= (2; [221] +[211] +[22]+ [21]+[111]+ [113) 

3 378 189 168 105 35 21 
3 3 1  

(2) (1; [i, I, T I  x ~ [ ~ ~ l x [ ~ l ~ )  
= ( I ;  [I I ']+[I 1 ']+2[' 3 "++[- 5 3 1  - -3 

+[Q f, 4]+3[3 1 1]+2[1 1 'I+[' 1 'I) 

2, 2, 2 2, 2, 2 29 2, 2 2, 29 2 

2 720 560 112 512 

2,  2 ,  2 2, 2, 2 29 2,  2 

168 112 48 8 
3 3 1  3 1 1  1 1 1  (3) (0; 1% I, I1 x {[% 2, I1 +[I, I, 21)) 

= (0; [3211+ [222] +[32] +[311] +3[221] +[31] 
1 1617 294 693 616 378 330 

+2[22]+4[211]+3[21] +3[ 1111 +[2] +2[ 111 + [l]). 
168 189 105 35 27 21 7 

(4.1) 
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At first level, the representation (2; [2, 13) appears, which satisfies the 4'th atypical 
condition; its highest state has to be considered as the highest weight of an invariant 
subspace to be decoupled. Its decomposition as if it were typical is 

(0) (2; [211) 

(1) 
(2) (0; [32]+[311]+[221]+[211]+[3]+2[21]+[111]+[1]). 

(4.2) 5 3 1  5 1 1  3 3 1  1 1 1  (1; [2,?, 11 + [ T ,  T ,  TI+[? ,  1, II+[?, I, 11) 

At second level, the representation (1; [:, 5, :]) appears, which satisfies the 3rd 
atypical condition, and its highest state has to be considered as the highest weight of 
an invariant subspace to be decoupled. Its decomposition as if it were typical is 

3 3 3  
(0) (1; [1, 2,21) 

(1) (0; [222]+ [221] +[211] +[111]). 
(4.3) 

Drawing away from (4.1) the Sp(2) x O(7) representations which appear in (4.2) 
and (4.3), we get the correct decomposition of the afypical representation (3; [f, f, f]), 
i.e. 

(4.4) 

The dimension of the representation is 9702, in agreement with reference [ 101. 
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